Real time QR Code / Bar code detection with webcam using OpenCV and ZBar

Categories Computer Vision, Uncategorized

Tutorial: Real time QR Code / Bar code detection using webcam video feed / stream using OpenCV and ZBar

Pre-requisites:

You will need to have installed OpenCV and ZBar (see previous tutorials) for this to work.

Source on Github:  https://github.com/ayoungprogrammer/WebcamCodeScanner

Code:

 #include <opencv2/highgui/highgui.hpp>  
 #include <opencv2/imgproc/imgproc.hpp>  
 #include <zbar.h>  
 #include <iostream>  
 using namespace cv;  
 using namespace std;  
 using namespace zbar;  
 //g++ main.cpp /usr/local/include/ /usr/local/lib/ -lopencv_highgui.2.4.8 -lopencv_core.2.4.8  
 int main(int argc, char* argv[])  
 {  
   VideoCapture cap(0); // open the video camera no. 0  
   // cap.set(CV_CAP_PROP_FRAME_WIDTH,800);  
   // cap.set(CV_CAP_PROP_FRAME_HEIGHT,640);  
   if (!cap.isOpened()) // if not success, exit program  
   {  
     cout << "Cannot open the video cam" << endl;  
     return -1;  
   }  
   ImageScanner scanner;   
    scanner.set_config(ZBAR_NONE, ZBAR_CFG_ENABLE, 1);   
   double dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH); //get the width of frames of the video  
   double dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT); //get the height of frames of the video  
   cout << "Frame size : " << dWidth << " x " << dHeight << endl;  
   namedWindow("MyVideo",CV_WINDOW_AUTOSIZE); //create a window called "MyVideo"  
   while (1)  
   {  
     Mat frame;  
     bool bSuccess = cap.read(frame); // read a new frame from video  
      if (!bSuccess) //if not success, break loop  
     {  
        cout << "Cannot read a frame from video stream" << endl;  
        break;  
     }  
     Mat grey;  
     cvtColor(frame,grey,CV_BGR2GRAY);  
     int width = frame.cols;   
     int height = frame.rows;   
     uchar *raw = (uchar *)grey.data;   
     // wrap image data   
     Image image(width, height, "Y800", raw, width * height);   
     // scan the image for barcodes   
     int n = scanner.scan(image);   
     // extract results   
     for(Image::SymbolIterator symbol = image.symbol_begin();   
     symbol != image.symbol_end();   
     ++symbol) {   
         vector<Point> vp;   
     // do something useful with results   
     cout << "decoded " << symbol->get_type_name() << " symbol "" << symbol->get_data() << '"' <<" "<< endl;   
       int n = symbol->get_location_size();   
       for(int i=0;i<n;i++){   
         vp.push_back(Point(symbol->get_location_x(i),symbol->get_location_y(i)));   
       }   
       RotatedRect r = minAreaRect(vp);   
       Point2f pts[4];   
       r.points(pts);   
       for(int i=0;i<4;i++){   
         line(frame,pts[i],pts[(i+1)%4],Scalar(255,0,0),3);   
       }   
       //cout<<"Angle: "<<r.angle<<endl;   
     }   
     imshow("MyVideo", frame); //show the frame in "MyVideo" window  
     if (waitKey(30) == 27) //wait for 'esc' key press for 30ms. If 'esc' key is pressed, break loop  
     {  
       cout << "esc key is pressed by user" << endl;  
       break;   
     }  
   }  
   return 0;  
 }  

To Test

Find any QR code or bar code and hold it close to your webcam and it should pick up.

Extacting Regions of Interest using Page Markers

Categories Computer Vision, Uncategorized

Source on GitHub: https://github.com/ayoungprogrammer/OMR-Example

Introduction

Optical Mark Recognition is recognizing certain “marks” on an image and using those marks as a reference point to extract other regions of interest (ROI) on the page. OMR is a relatively new technology and there is close to no documentation on the subject. Current OMR technologies like ScanTron require custom machines designed specifically to scan custom sheets of paper. These methods work well but the cost to produce the machines and paper is high as well as the inflexibility. Hopefully I can provide some insight into creating an efficient and effective OMR algorithm that uses standard household scanners and a simple template.

An OMR algorithm first needs a template page to know where ROI’s are in relation to the markers. It then needs to be able to scan a page and recognize where the markers are. Then using the template, the algorithm can determine where the ROI’s are in relation to the markers. In the case of ScanTrons, the markers are the black lines on the sides and ROI’s are the bubbles that are checked.

For an effective OMR, the markers should be at least halfway across the page from each other (either vertically or horizontally). The further apart the markers are, the higher accuracy you will achieve.

For the simplicity of this tutorial, we will use two QR codes with one in each corner as the markers. This will be our template:

Opening the template in Paint, we can find the coordinate of the ROI’s and markers.
Markers:
Top right point of first QR code:
1084,76
Bottom left point of second QR code:
77,1436
Region of Interests (ROI’s)
Name box:
(223,105) -> (603,152)
Payroll # box:
(223,152)->(603, 198)
Sin box:
(223, 198)->(603,244)
Address box:
(223,244)->(603,290)
Postal box:
(223, 291)->(603,336)
Picture:
(129,491) -> (766,806)

Using the coordinate we can do some simple math to find the relative positioning of the ROI’s.

We can also find the angle of rotation from the markers. If we find the angle between the top right corner and bottom left corner of the template markers we get: 53.48222 degrees. If we find that the markers we scan have is something different from that angle, we rotate the whole page by that angle, it will fix the skewed rotation.

Scanned image:

OMR Processed Image + Fixed rotation

Extensions

Two QR Codes in each corner looks ugly but there are many other types of markers you can use.
Once you have the coordinates of the ROI’s you can easily extract them and possibly OCR the data you need.
If you want to OMR a page where you have no control over the template you need to do some heuristics to find some sort of markers on the page (for example looking for a logo or line detection).
You can easily add an extension for multiple choice or checkboxes and extract the ROI to determine the selection.
In real applications you will want to create your own template dynamically and encode the ROI data somewhere so you do not have to manually enter the coordinates of the marker and ROI’s.

Source Code

Source on Github: https://github.com/ayoungprogrammer/OMR-Example

 

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <zbar.h>
#include <iostream>

using namespace cv;
using namespace std;
using namespace zbar;

//g++ main.cpp /usr/local/include/ /usr/local/lib/ -lopencv_highgui.2.4.8 -lopencv_core.2.4.8

void drawQRCodes(Mat img,Image& image){
  // extract results 
  for(Image::SymbolIterator symbol=image.symbol_begin(); symbol != image.symbol_end();++symbol) { 
    vector<Point> vp; 

    //draw QR Codes
    int n = symbol->get_location_size(); 
    for(int i=0;i<n;i++){ 
      vp.push_back(Point(symbol->get_location_x(i),symbol->get_location_y(i))); 
    } 
    RotatedRect r = minAreaRect(vp); 
    Point2f pts[4]; 
    r.points(pts); 
    //Display QR code
    for(int i=0;i<4;i++){ 
      line(img,pts[i],pts[(i+1)%4],Scalar(255,0,0),3); 
    } 
  } 
}

Rect makeRect(float x,float y,float x2,float y2){
  return Rect(Point2f(x,y),Point2f(x2,y2));
}

Point2f rotPoint(Point2f p,Point2f o,double rad){
  Point2f p1 = Point2f(p.x-o.x,p.y-o.y);

  return Point2f(p1.x * cos(rad)-p1.y*sin(rad)+o.x,p1.x*sin(rad)+p1.y*cos(rad)+o.y);
}

void drawRects(Mat& img,Point2f rtr,Point2f rbl){
  vector<Rect> rects;

  Point2f tr(1084,76);
  Point2f bl(77,1436);

  rects.push_back(makeRect(223,105,603,152));
  rects.push_back(makeRect(223,152,603,198));
  rects.push_back(makeRect(223,198,603,244));
  rects.push_back(makeRect(223,244,603,290));
  rects.push_back(makeRect(223,291,603,336));

  rects.push_back(makeRect(129,491,765,806));


  //Fix rotation angle
  double angle = atan2(tr.y-bl.y,tr.x-bl.x);
  double realAngle = atan2(rtr.y-rbl.y,rtr.x-rbl.x);

  double angleShift = -(angle-realAngle);

  //Rotate image
  Point2f rc((rtr.x+rbl.x)/2,(rbl.y+rtr.y)/2);
  Mat rotMat = getRotationMatrix2D(rc,angleShift/3.14159265359*180.0,1.0);
  warpAffine(img,img,rotMat,Size(img.cols,img.rows),INTER_CUBIC,BORDER_TRANSPARENT);

  rtr = rotPoint(rtr,rc,-angleShift);
  rbl = rotPoint(rbl,rc,-angleShift);

  //Calculate ratio between template and real image
  double realWidth = rtr.x-rbl.x;
  double realHeight = rbl.y-rtr.y;

  double width = tr.x-bl.x;
  double height = bl.y - tr.y;

  double wr = realWidth/width;
  double hr = realHeight/height;

  circle(img,rbl,3,Scalar(0,255,0),2);
  circle(img,rtr,3,Scalar(0,255,0),2);

  for(int i=0;i<rects.size();i++){
    Rect r = rects[i];
    double x1 = (r.x-tr.x)*wr+rtr.x;
    double y1 = (r.y-tr.y)*hr+rtr.y;
    double x2 = (r.x+r.width-tr.x)*wr +rtr.x;
    double y2 = (r.y+r.height-tr.y)*hr + rtr.y;
    rectangle(img,Point2f(x1,y1),Point2f(x2,y2),Scalar(0,0,255),3);
    //circle(img,Point2f(x1,y1),3,Scalar(0,0,255));
  }
}

int main(int argc, char* argv[])
{
  Mat img = imread(argv[1]);

  ImageScanner scanner; 
  scanner.set_config(ZBAR_NONE, ZBAR_CFG_ENABLE, 1); 

  namedWindow("OMR",CV_WINDOW_AUTOSIZE); //create a window

  Mat grey;
  cvtColor(img,grey,CV_BGR2GRAY);

  int width = img.cols; 
  int height = img.rows; 
  uchar *raw = (uchar *)grey.data; 
  // wrap image data 
  Image image(width, height, "Y800", raw, width * height); 
  // scan the image for barcodes 
  scanner.scan(image); 

  //Top right point
  Point2f tr(0,0);
  Point2f bl(0,0);

  // extract results 
  for(Image::SymbolIterator symbol = image.symbol_begin(); symbol != image.symbol_end();++symbol) { 
    vector<Point> vp; 

   //Find TR point
   if(tr.y==0||tr.y>symbol->get_location_y(3)){
     tr = Point(symbol->get_location_x(3),symbol->get_location_y(3));
   }

   //Find BL point
   if(bl.y==0||bl.y<symbol->get_location_y(1)){
     bl = Point(symbol->get_location_x(1),symbol->get_location_y(1));
   }
  } 

  drawQRCodes(img,image);
  drawRects(img,tr,bl);
  imwrite("omr.jpg", img); 

  return 0;
}